2002 Conference on Information Sciences and Systems, Princeton University, March 20-22, 2002

Self-organization Protocols for Wireless Sensor Networks

C. Chevallay
NIST
Gaithersburg, MD

Abstract —
less smart sensor network, due to the large number

Self-organization is critical for a wire-

of nodes, and to the fact that these nodes may be
Starting with the self-
configuration architecture proposed by Subramanian

spread over a remote area.

and Katz, we propose a set of distributed algorithms
that provides the basis for a complete self-organized
sensor network. Specifically, we develop protocols
that organize the sensor nodes into clusters and then
merge the clusters to form groups. Groups merge
to form larger groups, in a hierarchical process that
dynamically assigns a unique address to each smart
sensor. Additionally, a broadcast tree is constructed
in a manner to reduce the maximum number of hops

along the tree.

I. INTRODUCTION

Since wireless sensor networks [1] will often have many
nodes and will be deployed in remote environments, it is im-
portant that they have the ability to self-organize. Early work
on wireless self-organization includes the Linked Cluster Al-
gorithm (LCA) of Ephremides et al. [2] [3]; LCA uses a fixed
TDMA frame structure to form clusters so that all the nodes of
the cluster are within one hop of a distinguished node called
the cluster head. If the cluster heads of two adjacent clus-
ters are not within transmission range of each other, gateway
nodes are designated that connect them. The set of cluster
heads and gateways forms the backbone network.

Gerla and Tsai [4] use the linked cluster algorithm to cre-
ate a multi-hop wireless network suitable for real-time traffic.
They use both time division and code division access schemes,
and they set up virtual circuits that provide guaranteed band-
width. Lin and Gerla [5] extend the work in [4] to evaluate
the effect of synchronization in the network; their conclusion
is that an intermediate degree of synchronization is a useful
compromise. Sharony [6] suggests grouping the nodes into
both physical and virtual clusters.

Related to clustering is the problem of finding a minimum
connected dominating set (MCDS) of the nodes. An MCDS
satisfies two properties: (1) each node is either a backbone
node or is connected (one hop) to a backbone node, and (2)
the backbone nodes are connected. Kozat et al. [7] propose a
virtual dynamic backbone protocol that constructs a backbone
satisfying the MCDS properties. The backbone can then be
used for multicasting, broadcasting and QoS routing. Amis
et al. [8] cluster a network by finding a d-hop dominating set.
In this case, the nodes in a cluster may be up to d hops from
the cluster head. Since their general problem is NP-complete,
they develop a heuristic to organize the network.

Mirkovic et al. [9] specifically look at a large scale sensor
network with no mobility. They assume that there are too

0This work was supported by the Advanced Research and De-
velopment Activity (ARDA) under contract number 706400.

R. E. Van Dyck
NIST
Gaithersburg, MD

T. A. Hall
NIST
Gaithersburg, MD

many sensors to allow unique global IDs, and so they develop
a multicast tree protocol that allows multiple sinks to obtain
data from a (sensor) source. This approach differs from those
above in that it does not cluster the nodes. Wieselthier et
al. [10] also develop protocols for the construction of broadcast
and multicast trees in a wireless network with no mobility. To
extend the nodes’ lives (and hence the network’s life), they
form a minimum-energy tree from a source to the sinks.

In most of the work mentioned above, the nodes are
grouped into clusters that can be used for: (1) backbone for-
mation, (2) transmission management, and (3) routing effi-
ciency. For a wireless sensor network, especially one that is
self-organized, it is useful to take this clustering concept even
further to form a hierarchical network. Specifically, clusters
are aggregated to form groups, and groups are aggregated to
form larger groups. Moreover, it is desirable to build address
auto-configuration into the procedure. The resulting address-
ing scheme is typically not IP protocol-based.

The self-configuration architecture proposed by Subrama-
nian and Katz [11] leads to a hierarchical network with address
auto-configuration and a number of other useful properties. In
this paper, we complete their architecture by proposing a set
of distributed algorithms and message formats that allow an
actual implementation. We identify a number of important
parameters, and we study their effects on the overall system
performance. In particular, protocols are developed that orga-
nize the nodes into clusters, clusters into groups, and groups
into larger groups. An algorithm is given that builds a broad-
cast tree.

Another important issue is the coordination of the trans-
missions of the various nodes so that the number of packet
collisions is kept at an acceptably low level. In general, this is
a fairly difficult problem, heavily dependent on the structure
of the network, the amount and types of data and control
traffic, and the medium access control (MAC) protocol. In
a smart sensor network, collaborative signal processing algo-
rithms may be run in a cluster or a group [12], thereby gener-
ating local traffic. The MAC protocol used during this phase
of network operation need not be the same as during the self-
organization phase. An advantage of our proposed system is
that during the organization phase, the MAC layer is a simple
Aloha scheme; this is due to the hierarchical structure and
the relatively small number of messages that are transmitted
during the self-organization process.

II. SELF-ORGANIZATION ALGORITHM

The core concept of this work is inspired by Subramanian
and Katz [11], who proposed a self-configurable system and
then presented the main lines of an algorithm by which the
sensor nodes organized themselves to form a network. Their
algorithm provides a unique address for each node, allows
packets to be routed between any pair of nodes, builds both
network-wide and local broadcast infrastructures, and reorga-
nizes the network in case of link or node failures. Moreover,

the algorithm is scalable.
network:

They identify four phases in the

1 Discovery phase: Each node learns about its neighbors, and
it sets its transmission radius.

2 Organizational phase: The nodes start to aggregate together
into clusters; clusters aggregate themselves into larger groups,
and these aggregate to form even larger groups, etc. To some
extent, the groups may merge with other groups that are not
exactly the same size, but the merging is designed so that the
two groups are roughly the same size. This is done so that the
routing table maintained at each node is O(log V), where N
is the number of nodes in the network. The merging process
is discussed in more detail below.

3 Maintenance phase: Every node periodically emits an “I am
alive” message, and it informs its neighbors about it routing
table, its own neighbors, and its remaining level of energy.
This process is called active monitoring; in passive monitoring,
a node has to query another node to know if it is still alive.

4 Self-reorganization phase: A node detects neighbor failures
or group partitions, and it accordingly updates its tables. If a
group partition occurs, the group will try to join other existing
groups, while keeping the hierarchy height balanced.

RANDOM, EPHEMERAL TRANSACTION IDENTIFIERS

During group formation, when smaller groups merge with
each other to form larger groups, the nodes from different
groups have to exchange messages. Therefore, it is not suffi-
cient to identify a node only with its address, since two nodes
in two different groups may have the same one. To remedy
this problem each group needs to be assigned a group iden-
tifier. Also, when a cluster head has advertised its presence,
a node which has not found a cluster, and therefore has no
address, may want to join.

In both the above cases, we use Random, Ephemeral
TRansaction Identifiers (RETRI) [13]. RETRI are randomly
drawn numbers of a given limited size. They can be used when
one needs an identifier that should be unique, but only in a
certain place or over a limited period of time. Since a RE-
TRI is probabilistically unique, there is no absolute guarantee
about the uniqueness of such an identifier; however, if one
draws these identifiers out of a large enough pool, they have
a high probability of being temporally and spatially unique.
Determining the proper size of these identifiers is one of the
goals of this work.

III. CLUSTER FORMATION

To simplify the protocol design and reduce the number of
messages that must be exchanged among the nodes, we de-
cided that the members of the cluster would be one hop away
from the cluster head. This is consistent with the approach
taken by Ephremides et al. [2] [3]. Figure 1 shows the com-
plete message sequence between a cluster head and a node
interested in joining the cluster.

CLUSTER ADVERTISING

When any smart sensor comes to life, it first listens for
some random time to determine if it can hear a cluster head.
If its timer elapses before it hears anything, the node will
create its own cluster and become a cluster head itself (each
cluster head gets the local address 000). The duration of this

Cluster
Head

*
%

Fig. 1: Message exchange when a node joins an existing cluster.

Joining
Node

time may be dependent on the node’s remaining level of en-
ergy and its processing capacity, so that a more “powerful”
node is more likely to become a cluster head. A new clus-
ter head will locally broadcast an invitation (join message
in Figure 1) such that all nodes within a radius r will hear
it . Initially, » = 7o (see below for a discussion on 7). The
join message contains a RETRI cluster ID, and a flag indi-
cating which power class is used to send the message. This
flag is used by nodes who may want to join the cluster, so
that they know what emission power they should use in order
to be heard by the cluster head (roughly assuming channel
symmetry). The concept of a power class is simply a way of
discretizing the emission power, and each power-class may be
able to be mapped to an approximate transmission radius.

ANSWERING

If a join message is heard during the initial listening time,
the node will reply to the cluster head with a join_request
message, indicating the cluster ID that was heard (this
uniquely identifies the cluster head) and its own RETRI tem-
porary node identifier. Since it is quite likely that a collision
will occur if all the nodes that heard the cluster head and are
willing to join the cluster reply at the same time (this is a
reply storm), each node introduces a random delay before re-
plying. If a node hears multiple cluster head advertisements,
it should join the nearest cluster, i.e., the one whose join
message was sent with the lowest power class. This action is
aimed at preserving energy.

MANAGING CLUSTER SIZE

The goal is to have neither too many nor too few nodes in a
cluster, in order to provide good connectivity and redundancy
while limiting collisions. Let n(A) be the minimum number
of nodes in a cluster whose cluster head is A, and let N(A) be
the maximum number (including A in both cases). In [11], it
was suggested that one use N(z) = 8, so that 3-bit addresses
can be locally assigned within a cluster.

IDepending on the terrain and local jamming, the actual region
that is capable of receiving the message may be very different in
shape from a circle. Yet without loss of generality, we can still refer
to this region as having a radius, .

If there are not enough nodes in the cluster, the cluster
head keeps broadcasting join messages, increasing the trans-
mission radius according to r = k-7, k > 1. k should be
chosen to limit the number of consecutive retransmissions to
gain new members. Ideally, only one retransmission should be
necessary (assuming no collisions among the joining nodes); if
after the first message, only half the minimum required num-
ber of nodes join the cluster, then the broadcast area should
be roughly doubled. (This scheme assumes a uniform dis-
tribution of nodes over the area, which may be a reasonable
approximation on a local scale.) k is linked to the defined
power classes. Note that one can not increase the transmitter
power indefinitely (e.g. the cluster head is in a remote area
with few surrounding nodes). Therefore, there is a maximum
radius Rmaqe; if ¥ > Rmaqs, the cluster formation algorithm
is terminated, and each node tries to join previously existing
clusters. For this purpose, cluster heads should continue to
advertise once their cluster is formed.

Upon receiving a join_request message, the cluster head
will check if it still has some room in its cluster to accommo-
date the new node. If the answer is yes, the cluster head replies
with a join_confirm message, using the temporary address as
the destination; the cluster head also assigns the new cluster
member one of the free local addresses. The node then sends
an acknowledge (ACK) message. If the cluster head receives
a join_request but the cluster is full, it simply ignores this
message. The node that wants to join will reset after some
time, and start listening again to cluster head advertisements.

To illustrate the cluster formation procedure, consider the
simple eleven node wireless network shown in Figure 2(a).
Here, the thin lines indicate the radio links between nodes.
Figure 2(b) shows the resulting clusters, indicated by the
dashed lines. The three shaded nodes declared themselves
cluster heads, and the other nodes each joined a cluster. Each
cluster has its own local broadcast tree, as indicated by the
heavy lines. The merging of these clusters is discussed in Sec-
tion IV.

IV. CLUSTER MERGING
OVERVIEW

The network self-organization algorithm is based on the
fact that the groups will regularly try to merge with each
other (if possible), until the entire network becomes one single
group. At this time, each node has a unique address. When
two groups merge, they are the two halves of a new, larger
group. Therefore, the nodes in each group will increase their
address sizes, as well as modify their addresses (by adding
one or more new bits to the front of it, to insure address
uniqueness).

Since the addresses are dynamically assigned, a sink node
will have to broadcast its address once it receives one. Thus,
smart sensor nodes can not be programmed with an instruc-
tion such as “once you have made a decision, send it to the
sink node whose address is xxx”. Instead, the command would
be “once you have made a decision, send it to the sink node;
it will have advertised itself as such when it joined your local
network.”

To describe the merge operation, it is useful to define the
difference of address size between the two merging groups’
nodes. Let m be the address size in the larger group, and let
n be the address size in the smaller one. Define A :=m — n.
Figure 3 shows the flow of messages exchanged during the
merge operation, while Figure 4 shows how two clusters merge

fa)

Fig. 2: (’Z) (a) The initial network. (b) Three clusters formed.

to form a larger group. In this case, node C initiates the
merge with node B’s cluster. After the merge process, the
two clusters have combined their broadcast trees, as shown by
the heavy line between nodes B and C. A discussion of the
merging process continues below.

FINDING A SUITABLE GROUP

The first step in the merge process is to choose a neigh-
boring group to merge with. All nodes have to advertise the
size of their addresses as well as their group ID in the “I am
alive” beacon messages that they occasionally transmit. The
reason for transmitting the address size is so that a group
will try to merge with another group that is more or less the
same size. The beacon is very useful during network self-
organization, since it triggers merge operations. However as
the size of each connected component of the network grows,
the frequency of the advertisements may be reduced for non-
border nodes (these are the nodes whose neighbors all belong
to the node’s group), providing energy saving and a reduced
packet collision rate.

When a group detects more than one neighbor that could
be a suitable candidate for merging, it needs some criteria to
rank the choices:

e For addressing efficiency, a group should try to merge
with another group whose address size is as big as its
own (this is to maximize address space utilization, and
to not leave “holes” in the address space). So, a group
should first try to join a group of the same size (A = 0),
then if this is not possible, one where A =1, etc.

A B (responder)
merge_propose

\

C (initiator) D

| oo e propse
ACK ACK
\ /
—
— merge_respond
Ay merge_group_result
Ay /
merge respond |
ACK
ACK

ACK

\

merge_completed

Fig. 3: Message flow during merging operation.

e If two (or more) neighboring groups who are candidates
for the merge have the same address size, other criteria
must be used. Possible choices include the number of
links between each neighbor and the initiator’s group,
or the expected traffic between the two groups. Alter-
natively, we propose a metric called attractiveness.

ATTRACTIVENESS

The broadcast tree is built as groups merge with each other.
At each step, a link is created between the node that initiated
the merge process and the one that was invited.

When the node pair is randomly chosen, one does not have
any control on the resulting tree structure. For efficiency
reasons, the tree structure should be as close as possible to
a binary tree, and a configuration that should be avoided
occurs when all clusters are linked along a single backbone
chain. This is clearly not optimal for broadcasting information
through the entire network, since the information can not be
sent in parallel. Unfortunately, if the merges occur randomly,
the tree very often takes on this chain-like appearance.

So to build the tree, one would like that a new link is formed
between two groups at nodes that are close to the centers of
their respective groups. The center of a group is where the two
subgroups were linked when the group was built, and it is sup-
posed to be relatively close to the group’s topological center.
To achieve this objective, we introduce the concept of atirac-
tiveness. When two groups merge, the link between them (to
merge their broadcast trees) should be created between nodes
that have a high attractiveness, when compared to their neigh-
boring nodes. The closer a node is to its group’s center, the
higher the attractiveness. Attractiveness is denoted by A, and
it is regularly advertised in the beacon message.

ACK
/\

Fig. 4: Two clusters merging into a larger group.

Attractiveness is computed as follows. Initially, when a
node joins a cluster, its attractiveness is set to 0 (attractive-
ness is not defined for nodes who have not yet joined a clus-
ter). Then, as groups merge with each other, the broadcast
tree expands with new links being created. All members of the
cluster at each end of the new link increase their attractive-
ness an amount corresponding to the new address size. For
example, if the new address size is two bits larger then the
basic one (i.e., at cluster formation), then the new attractive-
ness is two. Within a cluster, some nodes should have a higher
attractiveness than others (since they are closer to the group’s
center). Therefore, 0.25 is added to the cluster head, and 0.5
to the node on the end of the new link.

As a result, a node with a relatively high attractiveness
should be more likely to initiate a merge process, and it should
very likely choose, among its neighbors, a node with a high
attractiveness as the other end of the link. The time between
tries to merge with one of its neighbors is found by taking
the basic time and dividing by A?, thereby allowing more at-
tractive nodes to check more frequently. The probability to
choose a particular neighbor ¢ is computed by

[e3
pi = ﬁa 1
neighbors

where a is a scaling factor to be chosen later. Thus, two new
fields are added to the merge_completed packet. The first one
is a single bit indicating whether or not there is a new value for
attractiveness, and if this is the case, the second field gives the
new value. The attractiveness must be updated only within
the cluster to which the link extremity belongs.

MERGING PROCEDURE

The merging procedure assumes two groups, whose address
sizes are m and n bits, respectively; without loss of generality,
assume m > n. Also, remember that A = m — n. Two cases
need to be considered.

o Same-level fusion: m = n.

In this case, the two groups to be merged have the same
address size. This is the best situation, since it will maximize
utilization of the address space. If the merge actually takes,
place, the nodes in one of the groups will add the bit 0 in front
of their existing addresses, while the nodes in the other group
will add the bit 1.

om>n
Check A, which decides between a fusion (although unbal-
anced), and an “adoption.”

e Small A: unbalanced fusion.

The two groups will merge as if they had the same ad-
dress size. The smallest group will have to add more
bits in front of its address than the usual 0 or 1 bit, and
there will be a “hole” in the resulting address space.
Subramanian and Katz [11] propose A < 3, which we
use for the present.

e Large A: adoption.

Having an unbalanced merged here would create a very
big hole in the address space, which is not desirable.
Therefore, the smallest group should be adopted by the
larger one; that is, it should try to fit into one of the
holes in the larger group’s address space. This illus-
trates that it is good to have an address tree structure
that has some small holes for flexibility.

INVITING THE OTHER NODE

When the merge initiator, node C in Figures 3 and 4, has
finally decided on node B (the responder), it will notify it with
a merge_propose message. Then, each of these two nodes
will have to ask the other nodes in its own group whether
or not they approve the merge. For scalability reasons, it
is not a good idea to query every single node in the current
network; instead, the group head has the authority to make
the decision. Hence, nodes B and C each need to propagate
the query to their respective group heads.

Packets may be routed directly to the group head. Here,
merge_propagate packets are instead routed along the broad-
cast tree. Each node knows the direction of the group head.
When the group head gets the message, and no such process is
currently under way, it will approve the merge. Otherwise, it
disapproves. The answer merge_respond is then sent back to
the originating node using the reverse path along the broad-
cast tree. In the current implementation, if an intermediate
node, which has already propagated a query towards its group
head, receives another query, it does not propagate the second
one. Instead, it sends a negative merge_respond to the second
querying node, thus saving messages to/from the group head.

MERGE CONCLUSION

When both the initiator and the responder nodes each have
an answer to their queries, it is time to decide about the
merge. The responder communicates its group’s answer to
the initiator through a merge_group_result message. Only if
both broadcast trees have returned a positive result will the
merge take place. The initiator will then tell the responder
of the final decision, using a merge _result message. Finally,
each of these two nodes will broadcast the same result down
its broadcast tree using a merge_completed message. If the
result is positive, it is sent to all nodes in both groups. If
negative, it is only sent to the nodes that were aware of the
merge operation, so they can properly set their internal state.

Upon reception of a positive merge_completed message, a
node has to update its neighbor and routing tables. The num-
ber of new bits in the address, the address, and the group
identifier of the new group are all changed. This way, each
node has a group identifier for each address size; the first one
is the cluster identifier. The attractiveness is updated within
the respective cluster of the initiator and the responder.

After a successful merge, the two broadcast trees have
merged into one. The link occurs between the initiator node
and the responder, and so the broadcast tree spans the two
groups. The initiator node becomes the group head for the
new group. As two groups of any size merge, the procedure is
the same: the two previous broadcast trees are merged. This
ensures that the final broadcast tree reaches every node, and
that it does not contain any loops.

V. SIMULATION RESULTS

The self-organization protocols have been simulated us-
ing the implementation of the Scalable Simulation Framework
(SSF) created by Dartmouth College [14]. A key assumption
in the present version of our simulation is that there are no
packet collisions. While one can conceive a MAC layer that
uses frequency hopping and/or multi-user detection to mini-
mize the number of collisions, we acknowledge that this as-
sumption is not intended to be completely realistic. Instead,
it allows us to determine the initial scalability of the system.
Still, the messages are on the order of 100 bits/packet, so even
at the relatively low bit rate of 10,000 bits/sec, a packet takes
about 10 msec for transmission. Consequently, there will not
be all that many collisions, assuming the transmission range
is kept reasonably small.

Figure 5(a) shows the average number of packets required
for the nodes to form clusters. Each data point is an average
of 100 trials, where a new network is randomly generated for
each trial. One can clearly see that the number of packets
grows linearly with the number of nodes. This is primarily
due to the parallelism in the clustering process. Moreover,
the average number of neighbors has very little effect on the
results. Networks where each node only has three neighbors
are often disconnected, while those with seven or more have
a high probability of being connected. Figure 5(b) gives the
average number of clusters as a function of the network size.
Here, the average number of neighbors does change the re-
sults. A network where each node averages three neighbors
has almost twice the number of clusters as one where each
node has 15 neighbors. Note that presently each cluster head
is limited to having seven ordinary nodes in the cluster, which
increases the number of clusters.

To get a sense for the locations of the cluster heads and the
types of clusters, it is useful to consider the network shown in
Figure 6. Thirty-six nodes, depicted by the small circles, are
placed along the sides of a road that forks. A typical sensing
application would like to detect, classify, and track vehicles
driving down the road. The self-organization algorithm cre-
ates nine clusters, ranging in size from a single cluster head
up to the maximum of eight nodes. The cluster heads are
designated by boxes around the nodes, and the transmission
radii are shown by the larger circles. One can compare these
results to those obtained using the linked cluster algorithm,
cf. Figure 4 in [12].

VI. DiscUSsSION AND CONCLUSIONS

This paper develops and defines a distributed algorithm for
self-organization of wireless sensor networks. The simulation
results show that the parallel nature of the cluster formation
phase allows it to scale to large networks. Further work re-
mains in investigating the impact of a number of parameters,
including R.qz and k, which relate to the transmission radius,
and therefore transmission power, of the individual nodes. In-
creasing the maximum radius of the cluster implies higher

Total Packets for Clustering

5851
1e5]
SedA
1e41
e i T T T T
de3 a3 ded Sed 1es
Modes
Total Clusters
Ted]
Sed
1e3
Se2
T T T T T
de3 a3 ded Sed 1es
Modes
Fig. 5: % (a) Average number of packets, and (b) average

number of clusters, both as a function of the number of nodes.
Crosses represent networks where each node averages 3 neighbors,
boxes represent 7 neighbors, and circles 15 neighbors.

energy expenditure and increased interference. The impact
of k is also important. If £ is too small, then the number of
retransmissions to gain new members is high, resulting in a
longer time needed to self-organize the network. It may also
adversely affect the energy required. If £ is too large, then the
transmission power may be higher than needed. One would
also like to constrain the maximum energy required by a single
node. Investigating these issues will require a more detailed
look at the MAC layer design. The optimal choice of time-
outs is also of interest, since it determines the time required to
self-organize and the resulting structure. Ultimately, we wish
to measure the performance of the algorithm by the ability of
the network to perform its sensing task.

REFERENCES

[1] G. J. Pottie, “Wireless sensor networks,” IEEE Information
Theory Workshop, pp. 139-140, June. 1998.

[2] D.J. Baker and A. Ephremides, “The architectural organization

Fig. 6: Example of clustering a 36 node network. The nine cluster
heads are depicted by boxes, and the ordinary nodes are depicted
by circles.

of a mobile radio network via a distributed algorithm,” IEEE
Trans. on Comm., vol. COM-29, pp. 1694-1701, Nov. 1981.

[3] A. Ephremides, J. E. Wieselthier, and D. J. Baker, “A design
concept for reliable mobile radio networks with frequency hop-
ping signaling,” Proc. IEEE. Vol. 75, pp. 56-73, Jan. 1987.

[4] M. Gerla and J. T.-C. Tsai, “Multicluster, mobile, multimedia
radio network,” Wireless Networks, pp. 255-265, 1995.

[5] C.R.Lin and M. Gerla, “Adaptive clustering for mobile wireless
networks,” IEEE J. Sel. Areas in Comm., Vol. 15, No. 7, pp.
1265-1275, Sept. 1997.

[6] J. Sharony, “An architecture for mobile radio networks with
dynamically changing topology using virtual subnets,” Mobile
Networks and Applications, pp. 75-86, 1996.

[7] U.C. Kozat, G. Kondylis, B. Ryu, and M. K. Marina, “Virtual
dynamic backbone for mobile ad hoc networks,” Proc. IEEE
Int. Conf. on Comm., Helsinki, Finland, 2001.

[8] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh,
“Max-min D-cluster formation in wireless ad hoc networks,”
Proc. IEEE Infocom, pp. 32-41, 2000.

[9] J. Mirkovic, G. P. Venkataramani, S. Lu, and L. Zhang, “A
self-organizing approach to data forwarding in large-scale sensor
networks,” IEEE Int. Conf. on Comm., Helsinki, Finland, 2001.

[10] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “On the
construction of energy-efficient broadcast and multicast tree in
wireless networks,” Proc. IEEE Infocom, pp. 585-594, 2000.

[11] L. Subramanian and R. H. Katz, “An architecture for building
self-configurable systems,” Proc. IEEE MobiHoc, 2000.

[12] R. E. Van Dyck and L. E. Miller, “Distributed sensor process-
ing over an ad-hoc wireless network: simulation framework and
performance criteria,” IEEE Milcom, Mclean, VA, Oct. 2001.

[13] J. Elson, and D. Estrin, “Random, ephemeral transaction iden-
tifiers in dynamic sensor networks,” Proc. 21st Int. Conf. on
Distributed Computing Systems, pp. 459-468, 2001.

[14] J. Liu and D. M. Nicol, Dartmouth Scalable Sim-
ulation Framework, Version 3.1 User’s Manual,
http://www.cs.dartmouth.edu/research/DaSSF/, Aug. 2001.

